Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells.
نویسندگان
چکیده
We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.
منابع مشابه
BopA has no
28 The ability of bifidobacteria to adhere to the intestine of human host is considered to be 29 important for efficient colonization and achieving probiotic effects. Bifidobacterium 30 bifidum strains DSM20456 and MIMBb75 adhere well to human intestinal cell lines, 31 Caco-2 and HT-29. Surface lipoprotein BopA has previously been described to be 32 involved in mediating adherence of B. bifidum...
متن کاملImproved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA
BACKGROUND Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of a...
متن کاملStrengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum
Epithelial barrier dysfunction has been implicated as one of the major contributors to the pathogenesis of inflammatory bowel disease. The increase in intestinal permeability allows the translocation of luminal antigens across the intestinal epithelium, leading to the exacerbation of colitis. Thus, therapies targeted at specifically restoring tight junction barrier function are thought to have ...
متن کاملBifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation
Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. We studied the role of the extracellular sialidase (SiaBb2, 835 amino acids [aa]) from Bifidobacterium bifidum ATCC 15696 in mucosal surface adhesion and carbohydrate catabolism. Human milk oligosaccharides (HMOs) or porcine mucin oligosaccharides as the sole carbon source enhanced B. bifidum growth. This was impa...
متن کاملColonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis
The effects of at least some probiotics are restricted to live, metabolically active bacteria at their site of action. Colonization of and persistence in the gastrointestinal tract is thus contributing to the beneficial effects of these strains. In the present study, colonization of an anti-inflammatory Bifidobacterium bifidum strain was studied in C57BL/6J mice under germ-free (GF) and specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 15 شماره
صفحات -
تاریخ انتشار 2008